11 resultados para 576 - Biologia cel·lular i subcel·lular. Citologia

em Deakin Research Online - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The subcellular localization of insulin signaling proteins is altered by various stimuli such as insulin, insulin-like growth factor I, and oxidative stress and is thought to be an important mechanism that can influence intracellular signal transduction and cellular function. This study examined the possibility that exercise may also alter the subcellular localization of insulin signaling proteins in human skeletal muscle. Nine untrained males performed 60 min of cycling exercise (~67% peak pulmonary O2 uptake). Muscle biopsies were sampled at rest, immediately after exercise, and 3 h postexercise. Muscle was fractionated by centrifugation into the following crude fractions: cytosolic, nuclear, and a high-speed pellet containing membrane and cytoskeletal components. Fractions were analyzed for protein content of insulin receptor, insulin receptor substrate (IRS)-1 and -2, p85 subunit of phosphatidylinositol 3-kinase, Akt, and glycogen synthase kinase-3 (GSK-3). There was no significant change in the protein content of the insulin signaling proteins in any of the crude fractions after exercise or 3 h postexercise. Exercise had no significant effect on the phosphorylation of IRS-1 Tyr612 in any of the fractions. In contrast, exercise increased (<i>P i>< 0.05) the phosphorylation of Akt Ser473 and GSK-3α/&szlig; Ser9/21 in the cytosolic fraction only. In conclusion, exercise can increase phosphorylation of downstream insulin signaling proteins specifically in the cytosolic fraction but does not result in changes in the subcellular localization of insulin signaling proteins in human skeletal muscle. Change in the subcellular protein localization is therefore an unlikely mechanism to influence signal transduction pathways and cellular function in skeletal muscle after exercise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple and sensitive HPLC method was developed to simultaneously determine CPT-11 and its major metabolite SN-38 in culture media and cell lysates. Camptothecin (CPT) was used as internal standard (I.S.). Compounds were eluted with acetonitrile–50 mM disodium hydrogen phosphate buffer containing 10 mM sodium 1-heptane-sulfonate, with the pH adjusted to 3.0 using 85% (w/v) orthophosphoric acid (27/73, v/v) by a Hyperclon ODS (C18) column (200 mm &times; 4.6 mm i.d.), with detection at excitation and emission wavelengths of 380 and 540 nm, respectively. The average extraction efficiencies were 96.9–108.3% for CPT-11 in culture media and 94.3–107.2% for CPT-11 in cell lysates; and 87.7–106.8% for SN-38 in culture media and 90.1–105.6% for SN-38 in cell lysates. Within- and between-day precision and accuracy varied from 0.1 to 10.3%. The limit of quantitation (precision and accuracy <20%) was 5.0 and 2.0 ng/ml for CPT-11 and 1.0 and 0.5 ng/ml for SN-38 in culture media and cell lysates, respectively. This method was successfully applied to quantitate the cellular accumulation and metabolism of CPT-11 and SN-38 in H4-II-E, a rat hepatoma cell line.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eccentrically biased exercise results in skeletal muscle damage and stimulates adaptations in muscle, whereby indexes of damage are attenuated when the exercise is repeated. We hypothesized that changes in ultrastructural damage, inflammatory cell infiltration, and markers of proteolysis in skeletal muscle would come about as a result of repeated eccentric exercise and that gender may affect this adaptive response. Untrained male (<i>ni> = 8) and female (<i>ni> = 8) subjects performed two bouts (<i>bout 1i> and <i>bout 2i>), separated by 5.5 wk, of 36 repetitions of unilateral, eccentric leg press and 100 repetitions of unilateral, eccentric knee extension exercises (at 120% of their concentric single repetition maximum), the subjects' contralateral nonexercised leg served as a control (rest). Biopsies were taken from the vastus lateralis from each leg 24 h postexercise. After <i>bout 2i>, the postexercise force deficit and the rise in serum creatine kinase (CK) activity were attenuated. Women had lower serum CK activity compared with men at all times (<i>Pi> < 0.05), but there were no gender differences in the relative magnitude of the force deficit. Muscle Z-disk streaming, quantified by using light microscopy, was elevated vs. rest only after <i>bout 1i> (<i>Pi> < 0.05), with no gender difference. Muscle neutrophil counts were significantly greater in women 24 h after <i>bout 2i> vs. rest and <i>bout 1i> (<i>Pi> < 0.05) but were unchanged in men. Muscle macrophages were elevated in men and women after <i>bout 1i> and<i>bout 2i> (<i>Pi> < 0.05). Muscle protein content of the regulatory calpain subunit remained unchanged whereas ubiquitin-conjugated protein content was increased after both bouts (<i>Pi> < 0.05), with a greater increase after <i>bout 2i>. We conclude that adaptations to eccentric exercise are associated with attenuated serum CK activity and, potentially, an increase in the activity of the ubiquitin proteosome proteolytic pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytokines are proteins that provide essential signals to blood and immune cells. The evolution of this system was determined from primitive organisms to humans and zebrafish. Analysis of zebrafish granulocyte colony-stimulating factor (GCSF) signalling revealed broad conservation of function with mammals and a novel role in white blood cell migration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A postembedding method has been developed for localizing water soluble allergens in rye-grass pollen. This uses dry fixation in glutaraldehyde vapour, followed by 2,2-dimethoxypropane, prior to a 100% ethanol series leading into embedment in LR Gold. This has allowed the attachment of specific monoclonal antibodies to the allergen, which are themselves probed with specific immunogold labels to the antibodies. Wall and cytoplasmic sites have been identified, representing an improvement of fixation and localization of allergens over previous studies employing polyclonal, broad spectrum antibodies.

Rye-grass allergens are labelled in mature pollen grains in the exine (tectum, nexine and central chamber), and in the electron opaque areas of the cytoplasm, especially mitochondria. The allergens are absent from the intine, polysaccharide (P) particles, amyloplasts, Golgi bodies and endoplasmic reticulum. IgE antibodies derived from humans allergic to rye-grass pollen, bind to similar sites in the cytoplasm but only to the outer surface of the pollen grain wall. This method now provides a valuable tool for further developmental studies on the pollen grains, in order to establish the site/s of synthesis of the allergens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exposure of fish to stressors can elicit biochemical and organismal changes at multiple levels of biological organization collectively known as stress responses. The organismal (plasma glucose and cortisol levels) and cellular (hepatic hsp70) stress responses in fish have been studied in several species, but little is known about sex-related differences in these responses. In this study, we exposed sexually immature juvenile chinook salmon (<i>Oncorhynchus tshawytschai>) to bleached kraft mill effluent (BKME: 0%, 1%, and 10% v/v) for 30 days and then measured components of their organismal and cellular stress responses. Males exposed to 1% BKME had higher levels of plasma glucose than females. Plasma cortisol levels were unaffected in females exposed to BKME, but males exposed to 10% BKME had significantly higher levels of plasma cortisol relative to non-exposed males. While exposure to BKME did not affect hsp70 levels in males, females exposed to 1% BKME had higher levels of hsp70 relative to non-exposed and 10% BKME groups. Within any given treatment, females had higher levels of hsp70 relative to males. This study demonstrates that sex-related differences exist in commonly used indicators of stress in fish, and points out the importance of considering the sex of the fish in stress research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Excessive axial elongation of the eye is the principal structural cause of myopia. The increase in eye size results from active remodelling of the sclera, producing a weakened scleral matrix. The present study will detail the biomechanics of the sclera and highlight the matrix and cellular factors important in the control of eye size. Scleral elasticity (load vs. tissue extension) and creep rate (tissue extension vs. time) have been measured postmortem in human eyes. Animal models of myopia have allowed the direct relevance of scleral biomechanics to be investigated during myopia development. Recently, data on tissue matrices incorporating scleral fibroblasts have highlighted the role of cellular contraction in scleral biomechanics. Scleral elasticity is increased in eyes developing myopia, with a reduction in the failure load of the tissue. Scleral creep rate is increased in the sclera from eyes developing myopia, and reduced in eyes recovering from myopia. These changes in biomechanical properties of the sclera occur early in the development of myopia (within 24 h). Alterations in scleral biomechanics during myopia development have been attributed to changes in matrix constituents, principally reduced collagen content. Although the biochemical structure of the sclera plays a critical role in defining the mechanical properties, recent studies investigating the cellular mechanics of the sclera, implicate myofibroblasts in scleral biomechanics. Scleral myofibroblasts have the capacity to contract the matrix and are regulated by tissue stress and growth factors such as transforming growth factor-&szlig;. Changes in these regulatory factors have been observed during myopia development, implicating cellular factors in the resultant weakened sclera. Changes in the biomechanical properties of the sclera are important in facilitating the increase in axial length that results in myopia. Understanding the matrix and cellular factors contributing to the weakened sclera may aid in the development of a clinically appropriate treatment for myopia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monodispersed mesoporous silica nanoparticles (MSNs) of optimal size and configuration were synthesized for uptake by plant organs, tissues and cells. These monodispersed nanoparticles have a size of 20 nm with interconnected pores with an approximate diameter of 2.58 nm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biodegradable magnesium-zirconia-calcium (Mg-Zr-Ca) alloy implants were coated with Collagen type-I (Coll-I) and assessed for their rate and efficacy of bone mineralization and implant stabilization. The phases, microstructure and mechanical properties of these alloys were analyzed using X-ray diffraction (XRD), optical microscopy and compression test, respectively, and the corrosion behavior was established by their hydrogen production rate in simulated body fluid (SBF). Coll-I extracted from rat tail, and characterized using fourier transform infrared (FT-IR) spectroscopy, was used for dip-coating the Mg-based alloys. The coated alloys were implanted into the femur bones of male New Zealand white rabbits. In vivo bone formation around the implants was quantified by measuring the bone mineral content/density (BMC/BMD) using dual-energy X-ray absorptiometry (DXA). Osseointegration of the implant and new bone mineralization was visualized by histological and immunohistochemical analysis. Upon surface coating with Coll-I, these alloys demonstrated high surface energy showing enhanced performance as an implant material that is suitable for rapid and efficient new bone tissue induction with optimal mineral content and cellular properties. The results demonstrate that Coll-I coated Mg-Zr-Ca alloys have a tendency to form superior trabecular bone structure with better osteoinduction around the implants and higher implant secondary stabilization, through the phenomenon of contact osteogenesis, compared to the control and uncoated ones in shorter periods of implantation. Hence, Coll-I surface coating of Mg-Zr-Ca alloys is a promising method for expediting new bone formation in vivo and enhancing osseointegration in load bearing implant applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidative and nitrosative stress (O&NS) is causatively implicated in the pathogenesis of Alzheimer’s and Parkinson’s disease, multiple sclerosis, chronic fatigue syndrome, schizophrenia and depression. Many of the consequences stemming from O&NS, including damage to proteins, lipids and DNA, are well known, whereas the effects of O&NS on lipoprotein-based cellular signalling involving palmitoylation and plasma membrane lipid rafts are less well documented. The aim of this narrative review is to discuss the mechanisms involved in lipid-based signalling, including palmitoylation, membrane/lipid raft (MLR) and n-3 polyunsaturated fatty acid (PUFA) functions, the effects of O&NS processes on these processes and their role in the abovementioned diseases. S-palmitoylation is a post-translational modification, which regulates protein trafficking and association with the plasma membrane, protein subcellular location and functions. Palmitoylation and MRLs play a key role in neuronal functions, including glutamatergic neurotransmission, and immune-inflammatory responses. Palmitoylation, MLRs and n-3 PUFAs are vulnerable to the corruptive effects of O&NS. Chronic O&NS inhibits palmitoylation and causes profound changes in lipid membrane composition, e.g. n-3 PUFA depletion, increased membrane permeability and reduced fluidity, which together lead to disorders in intracellular signal transduction, receptor dysfunction and increased neurotoxicity. Disruption of lipid-based signalling is a source of the neuroimmune disorders involved in the pathophysiology of the abovementioned diseases. n-3 PUFA supplementation is a rational therapeutic approach targeting disruptions in lipid-based signalling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the various applications for smartphones, mobile data traffic is growing at an unprecedented rate. The cellular network is suffering from traffic overloaded currently. Offloading part of the cellular traffic through opportunistic contact between mobile devices is a promising solution to solve the overload problem. However, due to the uneven distribution of devices and regular mobility of smartphone users, the contacts between mobile devices are opportunistic, the cellular traffic offloading approach results in poor performance, i.e., the relay user contacts with other mobile users with small probability. In this paper, we are the first to propose a movement-based incentive mechanism for cellular traffic offloading, where we control the mobility of relay users to improve the performance of traffic offloading. The movement-based incentive mechanism contains a relay user selection algorithm and a payment determination algorithm. Comparing with existing solutions, our proposed movement-based incentive mechanism has better performance.